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of PETN by Exploding Wires
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ABSTRACT: The effect of wire diameter on the initiation of
PETN by exploding platinum wires was ‘nveatigated. A one
nicrofarad capacitor charged to 2,000 volts was used as the
energy source for exploding the wires. The diameter of the
wire can be chosen so as to favor time reproducibility of
explosion, reliability of effecting detonation, or vigor of
the bridgewire output. The wire with the most vigorous shock
output when tested in air ia not necessarily the most
efficient for effecting detonation when PETN is loaded on

the wire.
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INTRODUCT ICN

1. This is the third report describing experimental results
obtained from an investigation on the interaction between an
exploding bridgewire and explosives. Previocus investigation®*
had shown that circuit inductance and resistance should be kept
to & minimum for effective initiation of PETN. Also, that the
length of a 1-mil diameter platinum wire should be chosen so as
to eliminate a definite current dwell period. In addition, it
was found that secondary current pulses have little effect on
whether or not detonation is produced in the PETN.

2. Benneth, and Jones and Gallet4 have shown that there 1s an
optimum wire diameter for producing the maximum shock 1in air
when a given wire material is exploded by a fixed firing circuit.
Our original investigation was started using a platinum wire
diameter of l-wmil. This diameter was arbitrarily chosen simply
because it was known to explode in nominal lengths with the
energy available from a l-microfarad capacitor charged to 2,000
volts. Energy computations hased on the current and voltege
waveforms showed that only a small percentage of the enerqgy
stored in the capacitor was deposited in the l-mil diameter

wire, The rest of the energy is dissipated in extraneous
circult resistance or left in the capacitor. This indicated

that a l-mil diameter might not represent the best diameter that
could be employed. The present investigaticn was concerned with
determining the effect of wire dianeter and learning more about
the conditions that determine whether or not detonation develops.

ELECTRICAL CIRCUITRY
3. A typical exploding bridgewire firing circuit consists of a
one microfarad capacitor charged to 2,000 volts. The actual
test circuit used for this investigation shown in Figure 1 is

similar to that used for previous studies. The parameters f{or
the test circuit are

C = 0.97 microfarad
L = 0.568 microhenry

R = 0.35 ohm

Vo = 2,000 volts

Methods used for the determination of the circuit parameters
are given in references 1 and 2,

*References are given on page B
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TEST PROCEDURE

4. The shock output of various diameter platirum bridgewires
was first determined in air and then correlated with the ability
to effect detonatior in PETN. To determine the vigor of the
output of the wire explosion, a photographic technique used by
Bennett® was employed to observe the shock wave and plasma
expansion of the wire. The wire was mounted in a holder as
shown in Fiqure 2. The s&lit image of a smear camera was aligned
perpendicularly to the wire. The image oY the wire explosion
reflected in a mirror provided backlighting for the event.

This makes the normally non-luminous shock waves visible.
Oscillograms were taken of the current and voltages waveforms
concuirent with the smear photograph of the wire expansion.
Regsistance, power, and energy computations were made from the
oscillogram readings.

5. The varicus diameter bridgewires were then subseqguently
tested for their ability to effect detonation in PETN. The
test fixture and experimental methods described in reference 1
were used for observing the growth of explosion.

EXPER IMENTAL RESULTS

6. Seven different diameters of platinum wire ranging in size
from 0.0005 to 0.005-inch were tested, in the fixture shown in
Figure 2, to determine the vigor ¢f the wire explosion. The
test wire, 0.050-inch long, was sclderec to the upper part of
the contact pins, suspended in air, and exploded. Selected
photographs of the resulting explosions are shown in Figure 2.
Only the upper portion of the wire explosion trace was usable
because of the reflections from the contact pins which set in
almost immediately in the lower portion.

7. The criterion for the vigcr of wire explosion was the rate
of radial expansion of the shock wave and cuter plasma surface.
The test results are shown graphically in Figure 4 with each
curve representing the average of three shots. The curves were
measured for their observable period or for a maximum of 2
microseconds. FPrevious data obtained with PETN loaded on the
wire at a density of 1 g/cm® have shown that detonation, when it
occurs, starts within one microsecond after the time of wire
burst. The vigor of the wire explosion in air, as measured by
the radial expansion from the time of wire burst, shows an
optimum wire diameter. From the plots in Figure 4 1t can be
seen tnat the 0.003 -inch diameter wire gives the most vigorous
output in air, closely followed by the 0,002 and 0.0015 -inch
diameters.




NOLTR 64-2

8. Another test series was run because of the closeness of the
results for the 0.0015; 0.002; and 0.003-inch diameter wires.

The platinum wire was mounted flush on a plastic plate. A
reflective mirror was not used and only the outer surface of the
plasma expansion was observed. The same order of vigor was noted
as shown in Figure 5. Each curve represents the average of

three shots. The rate of plasma expansion 1s yicaccs IIT 427 €
series than for the suspended wires, This is expected since the
flush wounting limits the expans.on region to a 180° arc.

S, It was also observed that the time to wire burst increases
with increasing diameter and hence increasing mass. Nash and
Olsen® nhave shown that there is a close io lincar relationship
between the cross sectional area c¢f the wire and the time to
burst at constant initial voltage. A close to linear relation-
ship up to the 0.003-inch diameter wire was also observed in

our tests. However, a defir.ite Jeviation was observed with the
larger diameters as shown in Figure €. An examination of the
oscillograms shows that the 0.0005; 0.001; 0.0015; and 0.002-

inch diameter wires explode on surcessively higher levels of

the first current pulse. The 0.003-inch diameter wire explodes
just after the first current peak. Figure 7 shows thg explosion
loci on an idealized?* current pulse. 7The 0.004 -inch diameter
wire does not receive enougn energy to completely vaporize

during the first current pulse, ncr is enough enerqgy deposited by the
time current ceases to flow. Computations show that enough enerqgy
is delivered to vapor':e approx.matily 70% of the wire and bring
the remaining 30% to the boiling point. With the 0,005 -inch
diameter wire, the current ceases to flow after three half cycles.
No shcck wave is emitted and the wire breaks up into macroscopic
molten particles as evidenced by the photegraphic traces.

10, If it is hypothesized that the vigor of the wire explosion

18 directly related to the ability of the wire to effect detonation,
then a 0.003-inch diameter wire should be optimum for the circuit
parameters employed. The ability of the wire tc effect detonation
in an explosive shouid decrease as the vigor of the wire explosion
decreases. This was tested using PETMN and gradually decreas:ing
the probability of detonation by 1ncreasing the loading density

of the PETN. A &series of test shots was run to determine the
optimum wire diameter for detonation. This method eliminated

any change in the electrical parameters. The rrsults in Table 1
show some agreemenrt between the vigor of the wire explosion and
its ability to effect detonation in PETN. Detonations could not

*This 1s 1dealized because each diameter wire would produce a
trace somewhat different from the traces for other diameter wires.
This occurs because of the differences in wire resietance and
minor changes in wire 1aductance.
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pe effected with the 0.0005-, 0.004-, and 0.005-inch diameter wires.
Detonation was effected by the 0.001-, 0.001%5-, 0.002-, and 0.003-
inch diameter wires. The ordering, based on the ability of the
wire to initiate the least sensitive PETN, shows the 0.002-inch
diameter wire to be most effective tollowed by the 0.0015-, 0.003-,
and G.00l-inch diameter wires, in that order. Comparison of this
ordering with that cbserved in air is given below:

Ordering of Wire Digmeter (inches)

To Effect Detonation Vigor of Exploding Wires
4n_PETN in Air

1. 0.002 0.003

2. 0.0015 0.002

3. C.003 0.0015

4. 0.001 0.001

The wire with the most vigorous output in air is not the best
for effecting detonation when surrounded by PETH. Voltage and
current oscillograms oktained on the 0,003-inch diameter wire
{(see Figure 8) show that the current pulse drecpped off rapidly
when the wire exploded in contact with PETN as compared to the
wire exploded in aivy. Wirea less than 0.003-inch 1in diameter
retain the resurge, It appears that energv of electrical origin
in the interval just after the wire buret can be beneficial in
effecting detonation. Prewviously, it was not known 1f events
up to the tire of wire explosion cor up to the time detonation
appeared {(about cne microsecond later) were important.

DISCUSS ION

11, The existence¢ of &n optimum wire diametar cap be ration-
alized on the basis that very thin wires are pocrly matched to
the firing circuit. Thin wires explode in short times using a
small quantity of the available ntored energy during the interval
of importance (time to burst plus approximately one microsecond) .
If the wire diameater ig too large, the wire will rot absort
sutficient energy to cause vaporization. This occurs even though
the stored enerqgy is sufficient to completely vapcrize the wire.
A comparison of energy deposition into the various diameter wires
is shown in Pigure 9. Energy deposition is more rapid initiaily
with the thinner wires bacause of their higher inttial resistance.
Wires more nearly matched to the circuit initially aksorb enerqgy
at a slightly lower rate than the thin wireas and then, as their
resiatance incieases, more rapidly than the thinner wires. The
change of wire resistance with time is shown in Figure i0. The
value ©f the peak resistance decreases with increasing wire

4
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diameter. The larger wires absorh energy at a lower rate.
Their resistance rema2ins less than that inherent in the firing
circult during the period of greatest possible energy dzposition
(first half sine wave current pulse). The 0.024-inch diameter
wire absorbs sufficient energy to give a weak explosion. Both
the 0.004-and 0.005% inch diameter wires receive insufficient
energy to completely vaporize the wires and can be classified
as "Chace-Class I"?. The ©.005 inch diameter wire appears
visually to break into moltern droplets. This breaking occurs
after the cessation of current flow since the average resistance
remains almost constant at 0.1 ohm during the period of current
flow.

12. Examination of energy deposition to time of wire burst,
energy deposition during the microsecond interval after burst,
and total energy deposition reveals no correlation with the
ability of the wire to effect detonation. See Figure 1ll. Also,
energy deposition in excess of that required for complete
vaporization of the wire does not correlate. Energy density at
burst shows ar. optimum for the 0.002-irnch diameter wire which
was found best for effecting detonation in PE'"'N, However, the
other diameter wires do not correlate with their respective
ability to effect detonation. See Figure 12. Ener3y density
at "burst plus one microsecond" shows that at this time the
thinner the wire, the higher the energy density¥.

13. The average power and pzak power for the various dianeter
wires was also examined. See Figure 13. Average power does not
correlate with the ability to effect detonation, but peak power
does show a correlation. Peak power occurs almost concurrently
with the peak voltage and may indicate the most important period
of electrical energy deposition. It has already been observed
with the 0.6G03-inch diameter wire that energy after burst can be
bereficial, but i1s not absolutely necessary.

14, The shock wave emitted by the wire 18 normally non-luminous.
It can be rendered visible for examinaticen by technigques such as
developed by Bennett. The shock enters both the PETN crystals
and interegtitial air spaces. Examination ot the air shock wiave
generated by the weakest exploding wire (0.001-inch diameter) to
effect detonation reveals a velocity of 1860 meters/second. This
is for a flush mounted wire anc¢ 18 the velocity of the air shock
almost i1mmediately after 1t recomes distinguishable from the
plasma at approximately 0.4 microsecond. Using an interpolated
value from data 1+ R. Becker® a shock pressure of 0.037 Kilobar
1s calculated.

L2
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15. To determine whether cor not compression b the shuck of air
trapped within the explesive could produce temperatures needed
for i1nitiation, the final temperature after adiabatic compression
of a “rapped gas bubble:

x:l
T, =T, [Eﬂ 1y
P, ]

'w"‘n

O
La?

e T, = final temperature in degrees absolute

= initial temperature in degrees absolute

o

= ni ia. pressure in bubble

g = final pressure in bubble

< © % 3
Ped

= ratio of specific heats

was calculated. The calculation shows that a temperature of
550°C can occur in the gas bubble under the experimental
conditions. This is above thegmwinimum temperature rise of 450°C
calculated by Bowden and Yoffe~ as necessary for initiatieg to
occur. However, experiments by both Cachia and Whitbread™ , and
Seay and Seely, Jr. indicate that intaratitial air has no
effact on the shock initiation of locsely packed granular, PETN.
Cachia and Whitbread, employing a gap test, found that the
critical gap remains the same whether or not interstitial air is
present, Seay and Seely, uzing the wedge test, also found that
+he removal of intesstitial air did not affect initiation. When
they replaced intersi.itial air in a low densjity PETN with argon
(for hich temperatures) and methane (for low temperatures), it
was found that the temperature of the interstitial gas had
nothing to do with the mechaniem of initiation. Their experi-~
ments further showed that a 2.5 kilobar shock pressure in the
PETN pressing was bargly sufficient to initiate granular PETN at
a density of 1.0 g/cm’. A shock wave of the pressure encountered
in the wire explosion is roughly two orders of magnitude lower
than the value given by Seay and Seely. It thus appears that
the shock wave is not the primary cause of initiation. It also
appea:rs tnat if the shock wave plays any role in the initiatiocn
it is through the medium of the PETN crystals and voids and not
the interstitizl gas. The largely unknown possibility of shock
reflactions and interactions due to interstitial spaces, crystal
imparfections, and crystal vcids preclude a definite conclusion
on the role of the shock wave at this time,

16. It was noticed that the best firing time reproducibility is
obtained when the wire explodes on the initial portion of the
current pulse. The length of the block rectangle in Figure 6
indicatas the time spread for each wire size.
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17. It appears that the diameter of the wire should be chosen
80 as to explcde on that portion of the current pulcse best
suited to give the desired effect. See Figure 14. If time
reproducibility is the main consideration, the wire should
explode in region A with encugh of a safety factor to insure
detonation. If aerneral functioning reliability is the main
consideration, reqion B should be chosen. If maximum wire
output is desired (i.e., to break diaphragms, etc.), region C
should be chosen.

CONCLUSIONS

1. The diameter of an expioding wire can be chosen so as
to lavor time reproducibility of explosion, reliability of
effecting detonation, or vigor of th=2 bridgewire output.

2. The wire with the most vigorous output in air is nct
necessarily the most efficient for effecting detonation in PETN.

3. Relatively thin and thick diameter wires are unable to
effect detonation in PETN with the fixed value firing circuit
components and voltages used,

4. For various diameter wires of constant length, peak
power shows a correlation with the ability of the wire to effect
detonation.
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